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Abstract
Correspondence _ Marine megafauna species are affected by a wide range of anthropogenic threats. To evalu-
Michelle VanCompernolle, Oceans [nstitute, The ate the risk of such threats, species’ vulnerability to each threat must first be determined. We
University of Western Australia, 35 Stirling Highway, R L. R K X K
Perth WA 6009, Australia. build on the existing threats classification scheme and ranking system of the International
Email: michellevancomp@gmail.com Union for Conservation of Nature (IUCN) Red List of Threatened Species by assessing
Ana M. M. Sequeira, Division of Ecology & the vulnerability of 256 matine megafauna species to 23 at-sea threats. The threats we
Fvolution, Research School of Biology, The considered included individual fishing gear types, climate-change-related subthreats not
Australian National University, 46 Sullivans Creek . 1 d d threat iated with tali ¢ d .. di b
Road, Canberra ACT 2600, Australia. Email: prevlous y assessed, an threats assoclated with coasta. lmpac S and maritime aisturbances.
ana.sequeira@anu.edu.au Our ratings resulted in 70 species having high vulnerability (» > 0.778 out of 1) to at least

1 threat, primarily drifting longlines, temperature extremes, or fixed gear. These 3 threats
"Deceased. were also considered to have the most severe effects (i.e., steepest population declines).
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Overall, temperature extremes and plastics and other solid waste were rated as affecting
the largest proportion of populations. Penguins, pinnipeds, and polar bears had the highest
vulnerability to temperature extremes. Bony fishes had the highest vulnerability to drifting
longlines and plastics and other solid waste; pelagic cetaceans to 4 maritime disturbance
threats; elasmobranchs to 5 fishing threats; and flying birds to drifting longlines and 2 mar-
itime disturbance threats. Sirenians and turtles had the highest vulnerability to at least one
threat from all 4 categories. Despite not necessarily having severe effects for most taxo-
nomic groups, temperature extremes wete rated among the top threats for all taxa except
bony fishes. The vulnerability scores we provide are an important first step in estimating
the risk of threats to marine megafauna. Importantly, they help differentiate scope from

KEYWORDS

INTRODUCTION

Anthropogenic activities are a widespread and increasing threat
to marine biodiversity globally (Dias et al., 2019; Dulvy et al,,
2021; O’Hara & Halpern, 2022) and lead to population declines
and extirpations wotldwide (e.g., Meyer et al., 2017; Nowicki
et al., 2019). Across all biodiversity, of particular concern atre
large marine vertebrates, including those that are highly mobile
and typically at (or near) the top of food webs (e.g, large
fishes, mammals, seabirds, and reptiles) (henceforth marine
megafauna) (Authier et al., 2017). Currently, one third of matine
megafauna ate globally threatened with extinction (Estes et al.,
2016) and listed as vulnerable, endangered, or critically endan-
gered on the International Union for Conservation of Nature
(IUCN) Red List of Threatened Species (www.iucnredlist.org).
These listed species include 31% of seabirds (Dias et al., 2019),
27% of marine mammals (Avila et al., 2018), 37% of elasmo-
branchs (Dulvy et al., 2021), 32% of scombrids (Juan-Jorda
etal., 2011), and 6 of the 7 marine turtle species (despite noted
recovery in some populations) (Mazaris et al., 2017). Despite
extensive literature describing the effects of anthropogenic
activities on marine megafauna (e.g, Clark et al., 2023; Sequeira
et al., 2025; Womersley et al., 2022), understanding how these
activities affect these species remains a key question in ecology
(Hays et al., 2010). Answering this key question is becoming
more pressing as anthropogenic threats continue to increase
(Halpern et al., 2019), especially because marine megafauna play
vital ecological roles in marine ecosystems (Estes et al., 2010),
can act as ocean sentinels (Hazen et al., 2019), and are of cul-
tural (Reyes-Garcia et al., 2023) and economic (Hammerschlag
et al,, 2019) importance globally.

Major at-sea anthropogenic threats to marine megafauna
include fishing, climate change, pollution, and shipping (Avila
et al., 2018; Braulik et al., 2023; Dulvy et al., 2021). Impacts
from fishing stem from directed overexploitation and incidental
capture. For example, industrial longline fisheries are responsi-
ble for the largest proportion of pelagic shark catches globally
(Oliver et al.,, 2015), and incidental catch in artisanal gillnet and
industrial seine and trawl fisheries has resulted in impacts to
pinnipeds (Sepulveda et al., 2023). Entanglement in fixed gear

severity, which is key to identifying threats that should be prioritized for mitigation.

anthropogenic threats, climate change, expert elicitation, fishing, marine megafauna, vulnerability

(principally gillnets) is a key threat to cetaceans (Knowlton et al.,
2022; Temple et al., 2024) and seabirds (Zydelis et al., 2013). Cli-
mate change impacts include ocean warming and acidification
and expansion of hypoxic zones, which alter prey abundance
and habitat quality (e.g., Kriiger et al., 2021; Lenoir et al., 2020).
Other climate change impacts include sea level rise, which neg-
atively affects nesting sites for turtles and seabirds (Pike et al.,
2015; Rodriguez et al., 2019), altered wind patterns, which influ-
ences seabird migrations (Somveille et al., 2020), and elevated
UV radiation, which can cause sun damage to whales (Martinez-
Levasseur et al., 2011). Pollution, including light (Marangoni
et al., 2022) and noise (Duarte et al., 2021) pollution and excess
nutrient and organic inputs (Cagnazzi et al., 2020), stems from
coastal and maritime sources and can result in negative impacts,
such as plastic ingestion (Clark et al., 2023) or entanglement
(Jepsen & de Bruyn, 2019). Ship strikes ate also a threat for large
mobile species, such as whale sharks (Rhincodon typus) (Womers-
ley et al., 2022). Land-based threats can also lead to considerable
impacts, such as terrestrial invasive species leading to declines
of seabird populations (Dias et al., 2019). However, the risk
of threats at sea is especially concerning for marine megafauna
that travel throughout the high seas, where protection is limited
(Conners et al., 2022; Sequeira et al., 2025).

Although identifying the spatial overlap of some marine
megafauna species with some of the threats they face has been
the focus of recent studies (e.g, Clatk et al., 2023; Maxwell et al.,
2013; Womersley et al., 2022), to understand risk across multi-
ple species and multiple threats, it is essential to determine each
species’ vulnerability to each threat. Vulnerability assessments
can provide the means with which to assess the spatial risk of
threats to marine megafauna based on species distributions and
the intensity of each of the threats they experience in different
areas of their geographical ranges. A few studies have explored
species vulnerability to threats based on species’ traits and their
environmental tolerances (e.g,, Albouy et al., 2020; Butt et al.,
2022). However, there is still the need to quantify vulnerability
based on the realized (or expected future) impacts (e.g., popula-
tion declines) of a species’ exposure to threats, as has been done
by the ITUCN.
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The TUCN Red List is the leading source for species’ extinc-
tion risk status and is used to track progress toward global
biodiversity targets (Rodrigues et al., 2006). The IUCN devel-
oped a globally recognized threats classification scheme, which
lists and provides definitions of possible threats to species
and a threat ranking system that quantifies the realized or
future potential impacts of threats to species (iucnredlist.org/
resources/threat-classification-scheme [April 2023]). This rank-
ing system is used to calculate the impact score of threats
to individual species based on their timing (period in which
impacts occur), scope (proportion of population affected), and
severity (resulting degree of population declines) and can be
used for direct comparisons across species from diverse taxo-
nomic groups (e.g,, Ward et al., 2021). However, incorporating
TUCN Red List impact scores in spatial risk assessments for
marine megafauna remains challenging because the IUCN Red
List threat designations are often provided only for broad cat-
egories. For example, although the IUCN generally assesses
pollution-related threats at the level appropriate for marine
megafauna (i.e., assigns impact scores for each individual rele-
vant pollution source), this fine resolution is missing for climate
change and fishing threats. This means that climate change
threats, such as sea level rise, coral bleaching, and sea ice loss, ate
considered a single threat on the IUCN Red List (included in the
“habitat shifting & alteration” category under “climate change
& severe weather”). Similarly, industrial fishing impacts are
delineated based on intentional versus unintentional catch with-
out determination of differences among fishing gears. However,
the impact score of each of these finer resolution threats is
independently quantifiable and may have different impacts on
different marine species (Brierley & Kingsford, 2009).

The vast scope of IUCN assessments, which span species,
taxonomic groups, and regions (applied to ~150,000 species
of birds, fishes, fungi, lichen, herpetofauna, invertebrates, and
mammals) (iucnredlist.org/ [September 2023]), means that fre-
quent updates are infeasible and may take years to complete
(assessments are considered valid for 10 years). This is especially
the case for understudied species (Cazalis et al., 2022), including
some marine megafauna. A combined ~20% of fishes, mam-
mals, and turtles (Pimiento et al., 2020) are currently listed as not
evaluated or data deficient. Some of the threat-ranking variables
(timing, scope, and severity) are listed as unknown for some
threats. This leads to serious knowledge gaps in species—threat
associations for marine megafauna and hinders the applica-
tion of the IUCN Red List threat ranking system to marine
megafauna globally. Independently considering all threats that
can be spatially evaluated across the entire geographical range
of a species is a fundamental but missing aspect of conset-
vation planning. For this reason, researchers have developed
different threat ranking systems (e.g., Butt et al., 2022; Halpern
et al., 2008) or used expert elicitation to rank species-specific
threats at different spatial scales (Ward et al., 2021). However,
no studies have focused on marine megafauna species and on
enhancing the IUCN Red List ranking system to globally assess
their vulnerability to the majority of threats they face.

We developed a framework that expands the threats classi-
fication scheme and impact ranking system of the IUCN to

explicit quantification of current species’ vulnerabilities. We
applied our framework to the vulnerability of marine megafauna
to 23 at-sea anthropogenic threats across the global oceans,
including threats at a finer resolution than previously consid-
ered by the IUCN, based on spatially explicit data availability for
existing threats. Understanding species vulnerability to threats
is a key first step in meaningfully defining impacts and spatially
evaluating risk. Such assessments will help explain population
trends and inform conservation actions to halt biodiversity loss,
as mandated by the Kunming—Montreal Global Biodiversity
Framework (cbd.int/gbf/targets/).

METHODS
Marine megafauna species selection

We aimed to evaluate as many species as possible that spend
a considerable portion of their life cycle in pelagic habitats
and make large-scale movements connecting distant or distinct
ecosystems. We used the following criteria to determine inclu-
sion in our evaluation of flying birds, fishes, marine mammals,
and turtles: listed on the Convention on the Conservation of
Migratory Species of Wild Animals Appendix I or IT (https://
www.cms.int/ [accessed November 2021]) or listed as migratory
and using oceanic habitats on the ITUCN Red List (iucnredlist.
org [accessed November 2021]). This excluded coastal cetaceans
heavily affected by entanglement in fishing gears (Temple et al.,
2024). However, we included all species of sirenians because of
their status as highly functionally unique, specialized, and endan-
gered marine mammals (Pimiento et al., 2020). For some taxa
that use terrestrial and marine ecosystems (e.g, penguins and
pinnipeds), we included all species because their movements
between these ecosystems and their high-latitude habitat use
provide functional contributions to marine ecosystems not cap-
tured solely by aquatic taxa. Our final list of species was further
restricted to species for which we could obtain expert input
(detailed below).

We obtained information for 256 species: 21 bony fishes, 57
(predominantly) pelagic cetaceans, 39 elasmobranchs, 77 flying
birds, the polar bear (Ursus maritimus), and all marine pinnipeds
(33), penguins (18), turtles (7), and sirenians (3) (Figure 1a;
Appendix S1). These include 14 critically endangered species,
36 endangered, 47 vulnerable, 27 near threatened, 127 least
concern, and 5 data-deficient species. Most species had decreas-
ing population trends (113 species), followed by unknown (79),
increasing (35), and stable (29) trends. Across the 256 species
examined, 48% had an incomplete impact assessment on the
TUCN due to unknown threat timing, scope, or severity scores
for the threats considered in their assessments (Figure 2).

Anthropogenic threat selection
To complement and build on the existing IUCN Red List assess-

ments, we identified relevant anthropogenic threats by first
building a matrix of all at-sea threats listed in the most recent
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(c) Scoring framework to create vulnerability scores:

Adapted from IUCN threat classification scheme: Adapted from Halpern et al. (2007):
A . -

I Timing - time period(s) Scope - proportion of ~ Severity — resulting ! Certainty - of each timing,
species is impacted population impacted population declines scope, and severity response
- Ongoing (3) - Whole (3) - Very rapid (3) - Very high (4)

- Future (1) - Majority (2) - Rapid (2) - High (3)
- Past (0) - Minority (1) - Slow, Fluctuating (1) ) 'I\_/Ioevs"("{‘; @
- Negligible, None (0 B
L ' a9 © - None (0)
Timing = Future Timing = Ongoing Vulnerability
everity level:
- Slow / : Very " Slow / . Very
Scope Neglig. Fluct. I rapid Neglig. Fluct. il rapid None
Minority 2 3 4 5 4 5 6 7 Low
Majority 3 4 5 B 5 5 7 Meditm
Whole 4 5 6 7 6 7 -

d) . Animal Borne Ocean Sensors (ANIBOS)

MEGAMOVE & BirdLife International
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/" (e) For each species-threat combination: N\

If the most common (mode) timing » vulnerability (v) =0
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FIGURE 1 Methods used to determine threat vulnerability scores for species—threat combinations: (a) 256 species considered and their extinction risk status
according to the IUCN (International Union for Conservation of Nature) Red List (iucnredlist.org) (silhouettes [left to right], bony fishes, cetaceans, elasmobranchs,
flying birds, polar bear, penguins, pinnipeds, sirenians, turtles; CR, critically endangered; EN, endangered; VU, vulnerable; NT, near threatened; LC, least concern;
DD, data deficient), (b) threats considered based on the IUCN Threats Classification Scheme 3.3 (iucnredlist.org/resources/threat-classification-scheme [accessed
April 2023]), (c) framework for expert scoring, (d) networks of experts invited to contribute, and (e) calculation of vulnerability scores.
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|Threat category>—| Threat — threat definition

IUCN threat } IUCN category |

|Temperature extremes — Periods in which temperatures exceed the normal range of variation

11.3 Temperature extremes

11. Climate change

UV Radiation — High-intensity ultraviolet (UV) reaching the ocean surface

Climate Ocean acidification — Reduced ocean pH resulting from high levels of carbon dioxide absorption - — - & severe weather
h Oxygen minimum zones — Ocean regions where dissolved oxygen reaches low levels (i.e., hypoxic zones) 11.1 Habitat shifting & alteration
CLELES Sea level rise — Increased sea level due to melting ice sheets and glaciers and the expansion of warming 11.5 Other impacts

| Aquaculture — Artisanal or industrial mariculture and aquaculture

2. Agriculture &
aquaculture

2.4.1 Subsistence/Artisanal Aquaculture
2.4.2 Industrial Aquaculture

tourism & recreation

Direct human intrusions — People spending time in or traveling in natural environments for reasons other than

1.1 Housing & urban areas
1.2 Commercial & industrial areas
6.3 Work & other activities

1. Residential &
commercial

development

Coastal
Impacts

QU

|Tourism - Tourism & recreation areas and tourism & recreation activities in nature

1.3 Tourism & recreation

|Agricu|ture runoff — Water-borne pollutants from agricultural and silvicultural systems

6. Human intrusions &
disturbances

9.3.1 Agriculture & forestry

| Light pollution — Input of light that disturbs wildlife or ecosystems

9.6.1 Excess energy - Light]|

|Urban runoff — Water-borne sewage and non-point runoff from housing and urban areas

9.1 Domestic & urban effluents|

Commercial — Commercial harvest: Intentional or unintentional/bycatch
Drifting longliners
Fixed gear — set longlines, set gillnets
Pole & line

Fishing Seiners

Trawlers

Trollers

9. Pollution

5.4.2 Intentional use - large scale &
5.4.4 Unintentional use - large scale

5.4. Fishing &
harvesting aquatic
resources

lArtisanal fisheries — Subsistence/small-scale harvest: Intentional or unintentional/bycatch

5.4.1 Intentional use - small scale &
5.4.3 Unintentional use - small scale

INoise pollution — Inputs of sound that disturb wildlife or ecosystems (includes noise from shipping)

9.6.3 Excess energy - Noise

| Plastics — Rubbish and other solid materials including those that entangle wildlife

b P G il 66 6P B 4 P P

9.4 Garbage & solid waste

3. Energy production

Maritime
disturbances

IMaritime pollution — Pollution from shipping, oil extraction, and industrial and military sources (includes oil spills) ><

& mining

9.2 Industrial & military effluents

0 L

|Benthic oil rigs — Exploring for, developing, and producing petroleum and other liquid hydrocarbons

|Shipping — Transport on and in ocean waterways (excludes pollution from shipping)

>< 3.1 0il & gas drilling ]
4. Transportation &
>< 4.3 Shipping lanes service corridors

FIGURE 2  Threats and threat categories used in our scoring framework of threats to marine megafauna and the associated IUCN (International Union for
Conservation of Nature) Red List of Threatened Species threat and threat categories from which they were derived. Numbers with [UCN threat names correspond
to the IUCN Threats Classification Scheme 3.3 (iucnredlist.org/resources/threat-classification-scheme [accessed April 2023]). See Appendix S3 for full definitions

of threats.

TUCN global assessments for each species and then cross-
referencing these with threats that were also spatially measured
across the entire geographic ranges of the species considered
(e.g., fishing intensity data from globalfishingwatch.org/). This
was done to facilitate future risk assessments based on vulnera-
bility scores and spatially gridded threat datasets. Our resulting
list of threats expanded on those already indicated on the IUCN
Red List to include 10 additional threats. Additional threats were
associated with mechanisms of habitat shifting and alteration
from climate change (4 threats) and associated with large-scale
fishing (i.e., to include individual fishing gears, 6 threats). We
excluded threats based on the same spatially measured data (as
O’Hara et al. [2021] did). This was the case for artisanal and
industrial aquaculture, which were combined because both are
mapped with data from the Food and Agriculture Organization
of the United Nations [https://www.fao.org/fishery/statistics-
query/en/aquaculture]); for intentional and unintentional arti-
sanal fisheries catches, which were both spatially calculated
by Watson (2019); and for 3 direct human intrusions (threats
related to human development for which human population
density is typically used as a proxy [O’Hara et al., 2021])
(Figure 2). Our final list consisted of 23 anthropogenic threats
across the 4 categories of climate change (oxygen minimum
zones, sea level rise, temperature extremes, ocean acidifica-
tion, and UV radiation); coastal impacts (agricultural and urban
runoff, direct human intrusions, aquaculture, light pollution,

and tourism); fishing (artisanal fisheries [all gear types] and drift-
ing longlines, fixed gear [including set longlines and gillnets],
pole and line, seiners, trawlers, trollers); and maritime distur-
bances (benthic oil rigs, shipping, maritime pollution, noise
pollution, and plastics and other solid waste) (listed in Figure 1b
and detailed in Appendix S2, including known or proposed
associated spatial datasets). The addition of the fine scale threats
for fishing and climate change resulted in 2560 new species—
threat combinations for which no data were available on the
TUCN Red List (Figute 2).

Threat vulnerability framework

We calculated scores for marine megafauna species vulnerability
to global anthropogenic threats at sea based on the 3 key vari-
ables TUCN uses in their threat ranking system (iucnredlist.org/
resources/threat-classification-scheme) (Figure 1c): timing, to
indicate the period in which a species was (0 for past), is (3 for
present), or will be (1 for future) affected by a threat; scope,
to indicate the proportion of a population affected by a threat
(1-3); and severity, to indicate the degree of population declines
resulting from the threat (0—3). Because we used an expert elic-
itation approach (detailed below), we added a fourth metric for
certainty that had values ranging from 0 (no certainty) to 4 (very
high certainty) to account for how confident each expert was in
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the ranking they provided for each of the 3 variables (follow-
ing Halpern et al. [2007]). The inclusion of the certainty metric
ensured that scores provided for each of the 3 variables were
weighted by the expert’s level of experience (i.e., perceived con-
fidence in knowledge of relevant literature and direct work with
species).

Creating scores for each species—threat
combination

We contacted over 600 experts in marine megafauna from net-
works, including MegaMove (megamove.org), Animal Borne
Ocean Sensors (anibos.com), BirdLife International (birdlife.
org), and IUCN Species Survival Commission (SSC) specialist
groups for cetaceans, marine turtles, penguins, pinnipeds, polar
bear, sharks, sirenians, and tunas and billfishes (www.iucn.org/
out-union/commissions/group/1445) (Figure 1d). All experts
were invited to contribute as coauthors and asked to circulate
the invitation through their networks of expert colleagues to
identify additional experts who could assist in developing our
vulnerability framework. We provided all experts with a docu-
ment outlining threat definitions (Appendix S2) and asked them
to score the timing, scope, and severity of all 23 threats to the
species in which they had expertise to provide their certainty
on each score assigned (Appendix S3). We also requested that
experts list additional threats not included but to which species
may have vulnerability, and confirm whether the threats being
considered affect species at a local or regional scale rather than
globally (i.e., at the entire geographical range of the species).
Expert coauthors could assess multiple species and had the
option of assigning the same scores to one or more species
in the same taxonomic group. Finally, each expert coauthor
also provided personal (gender identity, racial background) and
professional details (years of experience, primary affiliations)

(Appendix S3).

Compiling expert responses and calculating
vulnerability scores

With the all-responses dataset (i.e., all the scores combined), we
used bootstrapping to determine an average vulnerability score
with 5% and 95% confidence intervals for each species—threat
combination after removal of scores with no certainty (i.e., cer-
tainty = O for timing, scope, or severity). To do so, we expanded
the datasets for timing per species—threat combination by repli-
cating each expert score according to the associated certainty
score provided. For example, for timing, if an expert provided
a score of 3 (i.e., present threat) with very high certainty (4),
that timing score of 3 was replicated 4 times in the dataset. We
did the same for all # timing scores (where # is the number of
expert timing scores collected for a given species—threat combi-
nation) and then used bootstrapping (with replacement) to get
1000 samples of random timing scores from the full list of repli-
cated timing scores. Each sample contained 7 scores. We then
determined the most common (i.e., mode) timing score for each

sample of # scotes to generate 1000 timing scores and used the
mode of those scores to represent the final timing score for each
species—threat combination.

For species—threat combinations where timing was 0
(occurred in the past or not considered a threat), scope and
severity were also assigned a 0 because only ongoing or future
threats have scope and severity scores as per IUCN’ threat
scoring system. For species—threat combinations where timing
was 1 (future) or 3 (ongoing), we repeated the same bootstrap-
ping procedure for the scope and severity scores but calculated
the mean scope and severity scores (instead of mode) for each
sample of 7 scores (repeated analyses calculating the median led
to similar results). Using the resulting mean scores per sample
(i.e., 1000 sample means) for scope and severity, we calculated
the mean scope and severity scores (scope,,, and sevetity,,,
respectively) across the 1000 sample means and determined
the 5th (scopes and sevetitys) and 95th (scopegs and sevetitygs)
percentiles. Our final average vulnerability (#) score for each
species—threat combination was calculated as per the ITUCN
threat ranking system, that is, the 3 resulting variables were
summed and divided by 9 (which is the maximum possible
value for the 3 scores summed as per the IUCN ranking system
[Figure 1e]) to rescale scores and obtain values ranging from 0
to 1:

v = (timingmode + scope,g + severitym,g) /9. 1)

To create confidence intervals for » scores, we calculated vul-
nerability at the 5% (z5) and 95% percentile (295) in a similar way,
except that we replaced the average values with the respective
percentile values.

To reduce the effect of extreme (and potentially biased) vul-
nerability scores provided by individual experts, we repeated the
above process with a restricted dataset that excluded all species—
threat combinations for which we compiled fewer than 3 scores
(dataset R > 3). We further refined the R > 3 dataset by remov-
ing the minimum and maximum scores for timing X certainty,
scope X certainty, and severity X certainty from each of the
remaining species—threat combinations. Using the R > 3 dataset,
we then identified which threat resulted in the highest vulnera-
bility score for each species and used this value to allocate each
species into vulnerability categories. We did the latter by adapt-
ing IUCN’ threat ranking system. We rescaled scores from 0
to 1, where 1 indicated the threat causes very rapid declines
to whole populations), such that vulnerability is considered
high for » > 0.778 (>7 impact score on IUCN threat ranking
system [Figure 1c]), medium for 0.778 > » > 0.556 (6-7), low
for 0.556 > » > 0.222 (3-5), and negligible for » < 0.222 (<2)
(www.iucnredlist.org/resources/threat-classification-scheme).
We further summarized the highest vulnerability scotres aver-
aged across all species and in each taxonomic group as the
single threat with the highest average vulnerability score and all
threats with overlapping confidence intervals with this threat.
This was also done at a lower taxonomic level for pelagic
cetaceans (baleen and toothed whales), elasmobranchs (sharks
and rays), and birds (procellariforms and others) to evaluate
functionally distinct species groups within a taxon.
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RESULTS
Expert responses

We obtained 105,245 individual species—threat timing, scope,
and severity scores (Appendix $4), which led to the calculation
of vulnerability scores for 5759 species—threat combinations
out of the possible 5888 (covering each of the 23 threats for
256 species considered) based on 1694 evaluations provided
by 307 marine megafauna experts (coauthors on this article)
with affiliations from 51 countries and territories spanning all
continents except Antarctica (Appendices S5 & S6). Most eval-
uations were provided from academics (88.3%) based in Europe
(30.7%), North America (26.7%), and Oceania (17.9%) (Appen-
dices S5 & S0), and most (72%) had at least 10 years of working
experience with the taxonomic group for which they provided
expertise.

At least one set of scores (for all threats to a species) was
provided for each of the 256 species, and at least 3 were pro-
vided for 190 species (Appendices S7 & S8). Overall, scores
for elasmobranchs were completed by the largest number of
experts (80), followed by pelagic cetaceans (78) and turtles (49)
(Appendix S6). On average, turtles had the most per-species
scores (~25, range 12-36), followed by elasmobranchs (~16,
6-28) and the polar bear (8) (Appendix S4). Less than 1%
of all 5759 species—threat combinations were rated as only
being relevant at local or regional scales (rather than global)

(Appendix S4).

Expert certainty

Expert certainty tended to be the highest for fishing threats.
Drifting longlines, artisanal fisheries, fixed gear, and trawlers
had among the highest average certainties across all 3 vari-
ables (timing, scope, and severity) (Figure 3b; Appendix S9). In
contrast, climate change threats, including ocean acidification,
oxygen minimum zones, and UV radiation, had the lowest aver-
age certainties (0.43-0.48). Experts in bony fishes, flying birds,
and elasmobranchs had the highest certainty for drifting long-
lines (average = 0.89, 0.79, and 0.77, respectively). Experts in
polar bear, penguins, and pinnipeds had the highest certainty
for temperature extremes (0.86, 0.80, and 0.69, respectively).
Finally, turtle experts had the highest certainty for light pollution
(0.79), sirenian experts for artisanal fisheries (0.73), and pelagic
cetacean experts for noise pollution (0.62) (Figure 3b).

Threats to marine megafauna

Across all species—threat combinations for which we received at
least one score for all variables (all responses, 7 = 5759 scores
for 256 species), we identified 2953 species—threat combinations
with at least low vulnerability (» > 0.222). Most included species
were rated as having at least some vulnerability to temperature
extremes (72.7%), followed by plastics and other solid waste
(71.9%), maritime pollution (68.4%), and fixed gear (59.1%)

(Appendix S1). Most species (~75%) were identified as hav-
ing vulnerability to at least one threat in each of the 4 threat
categories, and 108 species (42.2%) had some vulnerability to
at least one threat not included in our list of threats, including
diseases and invasive species, offshore windfarms, recreational
fishing, extreme weather events, loss of sea ice, predation and
resource competition, and harmful algal blooms (Appendix S1).
The R>3 dataset (# = 4011 scores across 190 species) showed
that 2223 species—threat combinations indicated species vul-
nerability (Appendix S7). The largest proportion of species in
these datasets was rated as having at least some vulnerabil-
ity to temperature extremes (91.6%), plastics and other solid
waste (91.1%), maritime pollution (78.9%), and drifting long-
lines (73.2%). Because both datasets yielded similar results
(Appendix S10), we focused the remainder of our Results on the
most restricted dataset (R > 3 with 190 species), which included
all species of elasmobranchs, sirenians, and turtles considered,
polar bears, 51 flying bids, 34 pelagic cetaceans, 23 pinnipeds,
17 bony fishes, and 15 penguins (Appendix S7).

Species and taxa threat timing, scope, and
severity scores

Among the 4011 species—threat combinations rated in the R > 3
dataset, experts rated timing as ongoing for 2004 (~half) and
future for 255 combinations (Figure 4b). The largest number of
species considered were rated as having ongoing threat vulner-
ability for plastics and other solid waste, temperature extremes,
maritime pollution, drifting longlines, and fixed gear (principally
set longlines and gillnets). In contrast, climate change threats,
excluding temperature extremes, were among the threats rated
as posing ongoing vulnerability to the fewest number of species
but had the largest numbers of species with future vulnerability
(Figure 4b). For threat scope and severity scores, temperature
extremes received the highest scores averaged across all species,
overlapping with plastics and other solid waste and maritime
pollution for threat scope (i.e., affecting the largest portions
of species populations) and drifting longlines and fixed gear
for threat severity (i.e., causing the largest population declines)
(Figure 4c). On average, experts rated species as having the
highest vulnerability to temperature extremes (average = 0.683)
and plastics and other solid waste (0.6006) (Figure 4a). Although
not among the highest scores overall, direct human intrusions
(0.426) had the highest average vulnerability scores in the coastal
impacts category and drifting longlines (0.515) had the high-
est average vulnerability scores in the fishing category. Species
listed as critically endangered and least concern tended to have
the highest and lowest maximum vulnerability scores, respec-
tively, but there was no clear relationship between extinction risk
and maximum vulnerability among endangered, vulnerable, and
near-threatened species (Figure 5c¢).

At the taxon level, experts rated temperature extremes as
having the highest average threat vulnerability, scope, and sever-
ity for polar taxa (i.e., penguins, polar bear, and pinnipeds)
(Figure 3a). For turtles, the highest vulnerability scores were
for temperature extremes, sea level rise, artisanal fisheries, drift-
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for categories where no threat is among the highest overall; multiple solid circles for average vulnerability, more than one threat had vulnerability scores with
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that taxa; silhouettes [left to right|, bony fishes, cetaceans, elasmobranchs, flying birds, polar bear, penguins, pinnipeds, sirenians, turtles; all, all species considered).

ing longlines, plastics and other solid waste, direct human
intrusions, and light pollution. For flying birds, temperature
extremes, maritime pollution, plastics and other solid waste,
and drifting longlines resulted in the highest vulnerabilities;
the latter was especially pronounced for procellariform species
(albatrosses, petrels, and shearwaters) (Appendix S11). Plas-
tics and other solid waste was not among the threats causing
the highest severity. Sirenians had the highest average vulner-
ability to artisanal fisheries and direct human intrusions and
also had vulnerability to temperature extremes, agriculture and
urban runoff (although only among the highest threat sever-
ity scores), plastics and other solid waste, and maritime and
noise pollution (although only among the highest threat scope
scores). For elasmobranchs, the highest vulnerabilities were to
fixed gear, drifting longlines, artisanal fisheries, temperature
extremes, seiners, and trawlers, although for the 4 mobulids
in this taxon, drifting longlines were not among the highest
threats (see Appendix S11). For pelagic cetaceans, the highest
vulnerabilities were to noise pollution, shipping, temperature
extremes, plastics and other solid waste, and maritime pollu-
tion. However, plastics and other solid waste and maritime
pollution were only among the highest threat scope scores
for cetaceans (i.e., not among the highest severity scores), and
maritime pollution vulnerability scores were not among the
highest vulnerability scores for the 12 baleen whales consid-

ered (Appendix S11). Despite not being among the highest
threats to the pelagic cetaceans assessed, fixed gear (a well-
known threat to cetaceans [e.g,, Temple et al., 2024]) obtained
the highest vulnerability scores in the fishing category for this
taxon. Finally, the highest threat vulnerability scores for bony
fishes were associated with drifting longlines and plastics and
other solid waste, and the highest threat severity scores were
obtained for oxygen minimum zones, seiners, and temperature
extremes (Figure 6).

Species maximum vulnerability scores and
categories

We used the maximum threat vulnerability scores per species,
which were, on average, 0.757 out of 1 (Appendix S7), to
determine species’ vulnerability categories. The largest number
of these maximum threat vulnerability scores (across species
from all vulnerability categories) were obtained for tempera-
ture extremes (74), largely due to scope (but also severity for
some species, e.g., polar species), followed by drifting longlines
(60), plastics and other solid waste (13), and fixed gear and noise
pollution (8 each) (Appendix S7).

Almost 40% of species (# = 70, 95% CI 28-109) had high
vulnerability to at least one threat (» > 0.778) (Figure 5b; Appen-
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dices S7 & S8), including 28 flying birds, 22 elasmobranchs, 11
penguins, 6 turtles (all except hawksbill [Eretmochelys imbricatal,
African manatees [Zrichechus senegalensis], South American fur
seals [Arctocephalus australis), and sei whales [Balaenoptera borealis))
(Figure 5a), of which, 46 were threatened species (Figure 5b).
High threat vulnerability scores were obtained for drifting
longlines (45 species of elasmobranchs and flying birds), tem-
perature extremes (25) (polar species and turtles), fixed gear (18
elasmobranchs), artisanal fisheries (smalltooth sawfish [Pristis
pectinata] and African manatees), sea level rise (green [Chelo-

nia mydas| and leatherback [Dermochelys coriacea] turtles), seiners
(African penguins [Spheniscus demersus]), trawlers (angelsharks
[Squatina squatina]), and trollers (smalltooth sand tiger sharks
[Odontaspis ferox]) (Figure 5a).

The majority of the 190 species (117 species [95% CI 90—
149]) (Figure 5b; Appendices S7 & S8) received a maximum of
medium threat vulnerability (i.e., 0.556 < » < 0.778) to at least
one threat. Pygmy sperm whales (Kogia breviceps) received a max-
imum of low threat vulnerability (0.222 < » < 0.550) to at least
one threat (95% CI 3-12), and 2 petrel species received negli-
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and number of expert opinions received per species, (b) matrix of species ranked as high, medium, or low vulnerability to at least 1 of the 23 threats considered for
the vulnerability scores obtained at the 5% and 95% confidence interval (CI) levels IUCN, International Union for Conservation of Nature; CR, critically
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species per extinction risk category). The TUCN Red List extinction statuses are depicted based on the most recent IUCN species assessments (iucnredlist.org

[accessed April 2023)). Silhouettes represent bony fishes, cetaceans, elasmobranchs, flying birds, polar bear, penguins, pinnipeds, sirenians, and turtles.

gible threat vulnerability to all threats considered, including the
endangered Henderson petrel (Prerodroma atrata) and the least
concern Murphy’s petrel (Perodroma nltima) (Appendices S7 &
S8). However, these 2 petrels received only enough scores for
8 threats (i.e., all other threats were excluded from final analy-
ses) (Appendix S4). The vulnerability categories assigned were
higher for 77 species and lower for 4 species than categories
based on IUCN Red List assessments (Appendix S12).

DISCUSSION

Our comprehensive species threat vulnerability assessment,
based on expert opinion, provides insight into the global risk
posed by anthropogenic threats to predominantly pelagic and
highly mobile marine megafauna, highlighting the need to pri-
oritize conservation of specific species—threat combinations.
Our results showed that species vulnerabilities to a single threat
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range of confidence interval for threat with highest severity and scope for each taxon).

are, on average, 75% of the maximum possible (where the
threat is causing very rapid declines to whole populations)
and that almost 60% of species have high vulnerability to at
least 1 of the 23 threats we considered. Importantly, we pro-
vided an assessment of threat scope and severity that showed
that high exposure to threats through large threat scope did
not necessarily result in population declines (e.g;, temperature

extremes leading to changes in species distribution), unless
there was also high severity of impacts (e.g., fishing leading to
direct mortality). Because species across 6 taxonomic groups
(and particularly turtles and sirenians) received top vulnerabil-
ity scores for threats across categories, our results stress the
need to address and mitigate multiple anthropogenic threats
simultaneously.
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Across all taxonomic groups, particulatly for polar taxa
(pinnipeds, penguins, and polar bear), the highest average vul-
nerability scores were for temperature extremes. This finding
aligns with previous research focused on climate change impacts
on marine megafauna (e.g., Grose et al., 2020; Orgeret et al,,
2022; Patricio et al, 2021), including the close association
between temperature fluctuations and sea ice loss (Olonscheck
et al., 2019), which adversely affect the population dynamics of
several ice-adapted species from polar regions (Bestley et al.,
2020; Laidre et al., 2018). For bony fishes, elasmobranchs, fly-
ing birds, and turtles, at least one fishing threat received among
the highest vulnerability scotes, which is consistent with previ-
ous assessments showing that overfishing is the greatest threat
to these species (Dias et al., 2019; Dulvy et al., 2021; Senko
et al., 2022). As expected, drifting longlines and fixed gear had
top severity scores (along with temperature extremes) across
all species, underscoring the resulting population declines and
urgency in addressing these threats. For sirenians and the pelagic
cetaceans included in this study, maritime disturbances (except
benthic oil rigs) were of particular concern (in addition to
temperature extremes). However, fisheries can lead to more
immediate impacts and are expected to be a major threat to
marine mammals (Avila et al., 2018), particularly smaller species
(Read et al., 2000). Indeed, artisanal fisheries were associated
with one of the highest vulnerability scores for sirenians, and
although no fishing threats received the highest score for pelagic
cetaceans, fixed gear (considered the greatest threat to most
cetaceans [Braulik et al., 2023]) had the highest vulnerability
score within fishing threats for this taxon. The relatively low
estimate we obtained for pelagic cetacean vulnerability to fixed
gear is likely due to our focus on highly mobile and wide-ranging
species, meaning that most small-bodied threatened cetaceans
with relatively small coastal ranges (which are most vulnerable
to fixed gear [Temple et al., 2024]) were not included in our
analyses.

In the category coastal impacts, direct human intrusion vul-
nerability scores, on average, were among the highest across all
species and were associated with the highest scores for sire-
nians and turtles. This is in accordance with previous results
showing that, for sirenians, in-water construction increases the
chance of vessel collisions, entanglement, ingestion of debris,
disruptions to migratory pathways, exposure to pollutants, and
reductions in food availability (Hieb et al., 2021). For turtles,
coastal development is of particular concern because rising sea
level pushes nesting beaches closer to urban population centers
(Biddiscombe et al., 2020), and for herbivorous species, it may
reduce foraging opportunities through reduced plant diversity
and abundance (Bastos et al., 2022). At a lower taxonomic level,
Mobulidae also had the highest threat vulnerability scores for
direct human intrusions and tourism, plastics and solid waste,
2 climate change threats, and 4 fishing threats (the latter is
the most significant cause of global ray population declines
[Dulvy et al., 2021]). Indeed, mobulids are also well known to
inhabit coastal waters (Armstrong et al., 2020) and are affected
by tourism activities at aggregation or cleaning station sites
(O’Malley et al., 2013). Although we did not assess most coastal
and nonmigratory elasmobranchs (representing ~97% of elas-

mobranchs), the large number of threats across categoties faced
by species using coastal habitats underscores the wide range of
threats likely to affect all elasmobranchs.

As expected, the majority of species that received high vul-
nerability scores for at least one threat are listed as vulnerable,
endangered, or critically endangered on the IUCN Red List.
Our work filled crucial gaps by identifying and quantifying vul-
nerabilities for 5 marine megafauna currently categorized as
data deficient, including the flatback turtle (INatator depressus),
which had high vulnerability to temperature extremes. Although
this species has not been assessed by the IUCN since 1996,
recent studies show they are affected by several threats, includ-
ing marine plastics (Duncan et al., 2021), light pollution (Wilson
et al., 2018), and temperature extremes (van Lohuizen et al.,
2016). Multiple least concern species with increasing popula-
tion trends also were assigned high vulnerability to temperature
extremes or drifting longlines, specifically. These included great
(Ardenna gravis) and little (Puffinus assimilis) shearwaters, king pen-
guins (Aptenodytes patagonicus), and the South American fur seals,
for which limited empirical data exist showing any relationship
between these species and vulnerability to climate change (e.g.,
Bost et al., 2015). However, for the latter species, the knowledge
that El Nifio events affect South American fur seal popula-
tions in the Pacific Ocean (Edwards et al., 2021) may have
been reflected in expert scoring. In contrast, the endangered
Henderson petrel was one of 3 species that scored only low vul-
nerability to threats. This finding is likely due to the major threat
to them being invasive rats at nesting sites (Oppel et al., 2017),
a threat that was not included in our assessment given its terres-
trial nature. Because terrestrial invasive species are thought to
be the greatest threat to seabirds (Dias et al., 2019), the vulner-
ability scores for these taxa should be used with caution and
are likely to underestimate total threat vulnerability. Further,
underestimations of vulnerability level are likely for seabirds and
pinnipeds given the emerging risk of highly pathogenic avian
influenza A (HPAT) H5N1 viruses, which have recently caused
widespread mortality to birds globally (e.g., Giralt Paradell et al.,
2023).

A small proportion of our threat vulnerability scores,
obtained based on the threat timing, scope, and severity vari-
ables, differed from expectations or from previous results based
only on species traits and environmental tolerances. For exam-
ple, the sei whale was the only pelagic cetacean included in
our study that had high vulnerability to any threat (tempera-
ture extremes), whereas the only critically endangered cetacean
in this study (North Atlantic right whale [Ewubalaena glacialis))
had only medium vulnerability across all threats. This result was
surprising because sei whale populations ate considered to be
increasing and their endangered status is largely the result of
historical commercial whaling (Cooke, 2018). However, there
is some evidence linking El Nifio conditions to mass sei whale
mortality (Haussermann et al., 2017), which may have resulted
in regional biases among experts providing input.

In contrast, the North Atlantic right whale is highly threat-
ened by entanglement in fishing gear (Knowlton et al., 2022),
vessel strikes (Shatrp et al., 2019), and climate change (Meyer-
Gutbrod et al, 2021), which have resulted in a declining
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population trend (Runge et al., 2023) and a current population
estimate of fewer than 400 individuals (Pettis et al., 2021). The
severity of this population decline was, however, not captured
by our scores because the species did not receive above medium
vulnerability for any fishing threat. This might have happened
because experts were not required to rate more than one species,
meaning that a sense of compatison of vulnerabilities might not
be reflected in all scores provided. In future work, including
an explicit comparison of scores could reduce the potential for
inconsistent results.

Our result showing higher vulnerability of turtles to temper-
ature extremes than elasmobranchs and bony fishes contrasts
with the results obtained by Boyce et al. (2022). This differ-
ence may have resulted from the inclusion of large numbers
of nonmigratory fishes with restricted range sizes in Boyce
et al’s (2022) index, which could have inflated the contribu-
tion of the variables they used (e.g, thermal habitat variability
and thermal safety margins). Our results align with known
impacts from high temperatures on turtle hatchlings, leading to
female-biased populations (Bentley et al., 2020) and potentially
leading to turtle population declines through reduced hatch-
ing success (Saba et al., 2012). Although impacts from climate
change on elasmobranchs and bony fishes atre still not fully
understood, most published results point to changes in distri-
bution and habitat use, including poleward shifts (e.g;, Sequeira
et al., 2014) and changes associated with deoxygenation (Vedor
et al,, 2021). Regardless, the diverse range of threats affect-
ing fishes underscores the importance of comanaging multiple
threats to better support the sustainable exploitation of fisheries
resources. Further, these inconsistencies likely resulted from our
vulnerability framework being based on scores for expected tim-
ing, scope, and severity of impacts of threats to populations
(which implicitly includes knowledge of species’ environmental
tolerances and current level of exposure to threats) rather than
solely on species-specific traits or species’ known extinction risk
status.

Ours was a broad analysis of at-sea threats to highly mobile
and wide-ranging marine megafauna globally based on scores
provided by experts. Although we tried to address inherent
biases from the expert scoring processes, particularly those due
to the level of expert certainty and number of expert con-
tributions per species—threat combination, it is possible that
some other biases remained. For example, the threat vulnera-
bility of species that ate difficult to track or that interact with
threats in remote regions may have been underestimated. When
using our vulnerability scores, we suggest the certainty scores
for species—threat combinations (Appendix S9) be consulted.
We also recognize that globally mapped threats may not align
with local threats, and we encourage the development of region-
specific studies, particularly in regions from which we received
fewer contributions (e.g., Africa and Asia). Where possible, we
recommend cross-referencing our results with empirical data,
such as documented vessel strikes and injuries or deaths result-
ing from threats. The IUCN’s method of summing ordinal
variables has drawbacks, which might be why the calculation
of impact scores has been paused (see https://www.iucnredlist.
org/resources/threat-classification-scheme [accessed Decem-

ber 2023]). An alternative to the IUCN’s variables has yet to
be proposed, but we recommend future researchers using these
variables adapt the IUCN’s impact scoring system to ensure
compatibility with available data.

Because we aimed to specifically assess at-sea threats that
can be spatially mapped, we restricted our selection to threats
with available spatial datasets and did not consider threats
with limited spatial data (e.g, driftnets) or some land-based
threats (e.g., invasive species). Despite our recognition that it
is important to understand the separate effects of targeted ver-
sus unintentional fisheries, because these threats are mapped
using the same spatial datasets, we were unable to separate
them. The delineation between artisanal and industrial fish-
eries is also blurred in some regions (Belhabib et al., 2018),
meaning that our grouping of artisanal fisheries into one threat
rather than by gear type may have resulted in an underesti-
mate of species’ vulnerabilities in those regions. Further studies
should aim to evaluate these threats as spatial datasets for them
become available. Nevertheless, our expansion of industrial
fishing threats into 6 gear types provides the most compre-
hensive analyses of marine megafauna vulnerability to fishing
globally. Together with out expansion of individual threats for
climate change, our vulnerability scores will facilitate spatial
risk assessments and the planning of mitigation measutes to
promote species recovery. Our results and transparent meth-
ods that build on existing IUCN Red List scores will allow
evaluation of risk from at-sea threats to marine megafauna
over various spatial and temporal scales and help identify key
species and threats on which to focus and prioritize con-
servation actions in response to global initiatives to protect
biodiversity under the Kunming—Montreal Global Biodiversity
Framework.
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